Insulina e Glucagon: Como eles funcionam no controle da glicemia?

insulina glucagon

A insulina e o glucagon são dois hormônios produzidos pelo pâncreas, que são fundamentais para a vida e têm função inversa entre si.

Dependendo da necessidade do organismo, o pâncreas secreta ora insulina ora glucagon e assim controla de modo natural a glicemia no sangue.

Qual o Papel da Insulina e do Glucagon?

No Caso da Insulina

Quando comemos, os alimentos são transformados em açúcar (glicose). Essa glicose é o principal combustível do corpo e, justamente por isso, precisa ser armazenada para momentos de jejum ou falta de comida.

Após as refeições, o sangue irá apresentar picos glicêmicos e, a partir daí, o pâncreas entra em ação.

O pâncreas irá produzir insulina, que é o hormônio responsável por transportar a glicose do sangue para dentro das células. A insulina faz isso com as células do tecido muscular esquelético, adiposo e hepático.

Enquanto todo o corpo consome glicose para manter-se vivo, o fígado armazena aproximadamente 1% desse açúcar dentro de suas células em forma de glicogênio.

Desse modo, a insulina retira o açúcar da circulação sanguínea e o carrega para dentro das células do corpo e fígado.

Quando o pâncreas não funciona ou funciona de maneira deficiente, ocorre a falta ou a baixa produção de insulina, provocando Diabetes Tipo 1, Diabetes Tipo 2 ou Diabetes Gestacional, doenças caracterizadas pelo excesso de glicose no sangue (hiperglicemia).

E o Glucagon? Qual é o seu papel?

O glucagon faz o papel inverso da insulina. E juntos, insulina e glucagon equilibram e controlam o teor de açúcar no organismo.

O glucagon é produzido pelo pâncreas para os momentos de hipoglicemia, ou seja, quando a glicose presente nas células começa a cair para níveis em que falta combustível ao corpo.

Veja os números de referência para controle glicêmico:

  • Nível normal de glicose no sangue: de 70 mg/ dL a 100 mg/ dL;
  • Hiperglicemia: acima de 120 mg/ dL => atuação da insulina;
  • Hipoglicemia: abaixo de 60 mg/ dL => atuação do glucagon;
  • Diabetes: acima de 126 mg/ dL em jejum

Como falamos, após as refeições é normal haver picos glicêmicos, mas se a pessoa for saudável logo a insulina irá trabalhar para metabolizar a glicose e reequilibrar a glicemia no sangue.

A situação oposta é justamente a hipoglicemia, que pode ocorrer em jejuns ou longos intervalos entre as refeições. Tonturas, fraqueza, dores de cabeça e até desmaios são um sinal de que falta glicose para o cérebro.

Os sintomas de hipoglicemia funcionam como um sinal de alerta para a pessoa se alimentar rapidamente. No entanto, o corpo não pode ficar parado esperando por comida.

Ao menor sinal de hipoglicemia, imediatamente o pâncreas irá produzir o hormônio glucagon, que por sua vez estimula o fígado a transformar o glicogênio armazenado em moléculas de glicose.

Após fazer isso, o glucagon carrega a glicose do fígado para a corrente sanguínea e o teor de açúcar no sangue é novamente normalizado.

Note que nesse processo, a insulina e o glucagon também ajudam a regular a fome.

Insulina y Glucagón: ¿Cómo funcionan en el control de la glucemia?

Insulina y Glucagón

La insulina y el glucagón son dos hormonas producidas por el páncreas, que son fundamentales para la vida y tienen función inversa entre sí.

Dependiendo de la necesidad del organismo, el páncreas secreta ora insulina y el glucagón y así controla de modo natural la glucemia en la sangre.

¿Cuál es el papel de la insulina y del glucagón?

En el caso de la insulina

Cuando comemos, los alimentos se transforman en azúcar (glucosa). Esta glucosa es el principal combustible del cuerpo y, justamente por eso, necesita ser almacenada para momentos de ayuno o falta de comida.

Después de las comidas, la sangre presentará picos glucémicos y, a partir de ahí el páncreas entra en acción.

El páncreas producirá insulina, que es la hormona responsable de transportar la glucosa de la sangre dentro de las células. La insulina lo hace con las células del tejido muscular esquelético, adiposo y hepático.

Mientras todo el cuerpo consume glucosa para mantenerse vivo, el hígado almacena aproximadamente el 1% de ese azúcar dentro de sus células en forma de glucógeno.

De ese modo, la insulina retira el azúcar de la circulación sanguínea y lo lleva dentro de las células del cuerpo y del hígado.

Cuando el páncreas no funciona o funciona de manera deficiente, ocurre la falta o la baja producción de insulina, provocando Diabetes Tipo 1, Diabetes Tipo 2 o Diabetes Gestacional, enfermedades caracterizadas por el exceso de glucosa en la sangre (hiperglicemia).

¿Y el Glucagón? ¿Cuál es su papel?

El glucagón hace el papel inverso de la insulina. Y juntos, insulina y glucagón equilibran y controlan el contenido de azúcar en el organismo.

El glucagón es producido por el páncreas para los momentos de hipoglucemia, es decir, cuando la glucosa presente en las células comienza a caer a niveles en los que falta combustible al cuerpo.

Consulte los números de referencia para el control glucémico:

– Nivel normal de glucosa en sangre: de 70 mg / dL a 100 mg / dL

– Hiperglicemia: por encima de 120 mg / dl => actuación de la insulina

– Hipoglucemia: por debajo de 60 mg / dl => actuación del glucagón

– Diabetes: por encima de 126 mg / dl en ayunas

Como hemos hablado, después de las comidas es normal que haya picos glucémicos, pero si la persona es saludable pronto la insulina trabajará para metabolizar la glucosa y reequilibrar la glucemia en la sangre.

La situación opuesta es justamente la hipoglucemia, que puede ocurrir en ayunos o largos intervalos entre las comidas. Tumbas, debilidad, dolores de cabeza y hasta desmayos son una señal de que falta glucosa para el cerebro.

Los síntomas de hipoglucemia actúan como una señal de alerta para que la persona se alimenta rápidamente. Sin embargo, el cuerpo no puede quedarse parado esperando comida.

Al menor signo de hipoglucemia, inmediatamente el páncreas producirá la hormona glucagón, que a su vez estimula el hígado a transformar el glucógeno almacenado en moléculas de glucosa.

Después de hacer esto, el glucagón carga la glucosa del hígado al torrente sanguíneo y el contenido de azúcar en la sangre se normaliza de nuevo.

Tenga en cuenta que en este proceso, la insulina y el glucagón también ayudan a regular el hambre.

 

 

 

Sistema Endócrino e seus Hormônios

Conhecer as principais glândulas endócrinas e seus hormônios é fundamental para a compreensão do funcionamento do organismo!

Os hormônios são substâncias produzidas pelas chamadas glândulas endócrinas. Essas glândulas produzem secreções que são lançadas diretamente na corrente sanguínea. No nosso corpo, o conjunto dessas glândulas forma o chamado sistema endócrino.

A seguir conheceremos as principais glândulas endócrinas e seus hormônios:

Hipotálamo

  • Fator inibidor da prolactina (PIF) – Inibe a produção de prolactina pela hipófise;
  • Hormônio liberador da corticotrofina (CRH) – Estimula a liberação do hormônio adrenocorticotrófico;
  • Hormônio liberador da tireotrofina (TRH) – Estimula a secreção do hormônio tireoestimulante;
  • Hormônio liberador de gonadotrofinas (GnRH) – Estimula a liberação dos hormônios folículo estimulante e luteinizante;
  • Hormônio liberador do hormônio do crescimento (GHRH) – Estimula a secreção do hormônio do crescimento;
  • Ocitocina ou oxitocina – Estimula a contração do útero e a expulsão do leite. Esse hormônio, apesar de ser sintetizado no hipotálamo, é armazenado na porção da hipófise denominada de neuro-hipófise;
  • Vasopressina ou hormônio antidiurético (ADH) – Promove a reabsorção de água pelos rins. Assim como a ocitocina, esse hormônio, após a síntese, é armazenado na neuro-hipófise.

Hipófise ou Glândula Pituitária

  • Hormônio adrenocorticotrófico (ACTH) – Estimula a liberação de hormônios pelo córtex das suprarrenais;
  • Hormônio do crescimento (GH) – Promove o desenvolvimento de ossos e cartilagens, acelerando o crescimento do organismo;
  • Hormônio Folículo Estimulante (FSH) – Promove a espermatogênese no homem e, na mulher, estimula o crescimento dos folículos ovarianos;
  • Hormônio luteinizante (LH) – No homem, estimula a produção de testosterona e, na mulhe,r atua na maturação do folículo ovariano e na ovulação;
  • Hormônio Tireoestimulante (TSH) – Estimula a secreção dos hormônios da tireoide;
  • Prolactina – Estimula a produção de leite nas glândulas mamárias.

Glândula pineal

  • Melatonina – Atua, principalmente, regulando o sono, mas possui funções imunomoduladoras, anti-inflamatórias, antitumorais e antioxidantes.

Tireoide

  • Calcitonina – Diminui os níveis de cálcio no sangue. Possui ação contrária à do paratormônio;
  • Tiroxina – Atua no metabolismo e na respiração celular;
  • Tri-iodotironina – Atua no metabolismo e na respiração celular.

Paratireoide

  • Paratormônio – Aumenta o nível de cálcio no sangue. Possui ação contrária à da calcitonina.

Suprarrenais

Córtex da suprarrenal:

  • Aldosterona – Promove a reabsorção do sódio, garantindo o equilíbrio eletrolítico;
  • Cortisol – Provoca aumento na concentração de glicose no sangue e na mobilização de aminoácidos do músculo esquelético para o fígado.

Medula da suprarrenal

  • Adrenalina e Noradrenalina – Esses dois hormônios são quimicamente semelhantes, produzidos a partir de modificações bioquímicas no aminoácido tirosina.

Quando uma pessoa vive uma situação de estresse (susto, situações de grande emoção etc.), o sistema nervoso estimula a medula adrenal a liberar adrenalina no sangue. Sob a ação desse hormônio, os vasos sanguíneos da pele se contraem e a pessoa fica pálida; o sangue passa a se concentrar nos músculos e nos órgãos internos, preparando o organismo para uma resposta vigorosa.

A adrenalina também produz taquicardia (aumento do ritmo cardíaco), aumento da pressão arterial e maior excitabilidade do sistema nervoso. Essas alterações metabólicas permitem que o organismo de uma resposta rápida à situação de emergência.

A noradrenalina é liberada em doses mais ou menos constantes pela medula adrenal, independentemente da liberação de adrenalina. Sua principal função é manter a pressão sanguínea em níveis normais.

Pâncreas

  • Insulina – Aumenta a captação de glicose pelas células, a síntese de glicogênio e estimula a síntese de proteínas;
  • Glucagon – Promove a gliconeogênese (síntese de glicose) no fígado;
  • Somatostatina – Intervém indiretamente na regulagem da glicemia, e modula a secreção da insulina e glucagon;
  • Amilina – A amilina é um hormônio do tamanho de um peptídeo que é produzida e liberada pelas mesmas células beta do pâncreas, como a insulina. A função da amilina ainda não está completamente compreendida, desde que foi descoberta recentemente, nos últimos 20-25 anos; no entanto, os cientistas estão começando a reconhecer a relevância que esse hormônio desempenha no corpo e como é importante para o controle da glicose;
  • Polipeptídeo Pancreático – Tem como objetivo inibir o pâncreas exócrino e reduzir a libertação da somatostatina;
  • Gastrina – É um hormônio que controla a produção de ácido no estômago.

Testículos

  • Testosterona – Promove o desenvolvimento de características sexuais masculinas e estimula a espermatogênese;
  • Estradiol – É um hormônio, que na qual, em anatomia masculina, atua como importantes efeitos comportamentais. Altos níveis de estradiol são relacionados com uma redução do comportamento competitivo, agressivo e de dominância;
  • Inibina –   é um hormônio cuja função principal é a inibição da produção de Hormônio folículo-estimulante (FSH) pela hipófise. É antagonista (tem efeito oposto) da activina. Existem dois tipos: Inibina A e Inibina B;
  • Androgênicos – Um hormônio masculino produzido pelos testículos a partir do colesterol. Na verdade, são substâncias modificadas quimicamente, a partir da molécula de testosterona, tendo como objetivos diminuir a velocidade de degradação do hormônio original, bem como, tentar evitar os seus efeitos masculinizantes (androgênicos).

Ovários

  • Estrógeno – Promove o desenvolvimento de características sexuais femininas e o aumento do endométrio;
  • Progesterona – Promove o desenvolvimento de características sexuais femininas e garante a manutenção do endométrio;

Estômago

  • Gastrina – É um hormônio que controla a produção de ácido no estômago;
  • Grelina – Também conhecida como o “hormônio da fome”, é um hormônio peptídeo produzida principalmente pelas células épsilon do estômago e do pâncreas quando o estômago está vazio e atuam no hipotálamo lateral e no núcleo arqueado gerando a sensação de fome;
  • Histamina – As células enterocromafins após estímulo da gastrina produz o hormônio histamina que também estimula a secreção de ácido pela estimulação dos receptores H2 das células parietais. A histamina é um cofator necessário para estimular a produção de ácido clorídrico;
  • Neuropeptídeo Y – É um hormônio estimulador de apetite.

Timo

  • Timosina – é um hormônio polipeptídico do timo que influi na maturação dos linfócitos T destinados a desempenhar uma função ativa na imunidade por mediação celular. A timosina pode servir como imunotransmissor, modulando os eixos hipotalâmicos hipofisário-suprarrenal e das gônadas. Também colabora para a neutralização dos efeitos danosos do cortisol.

Fígado

  • Colecistocinina – é uma hormônio gastro-intestinal (GI) que estimula a contração da vesícula biliar e do pâncreas, com digestão de gordura e proteínas. Está relacionado com a digestão e com a sensação de saciedade;
  • Angiotensinógeno – é um hormônio que aumenta a pressão sanguínea quando ativado pela renina.